On Approximating Restricted Cycle Covers

نویسنده

  • Bodo Manthey
چکیده

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. A special case of L-cycle covers are k-cycle covers for k ∈ N, where the length of each cycle must be at least k. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to settling the complexity and approximability of computing L-cycle covers. On the one hand, we show that for almost all L, computing L-cycle covers of maximum weight in directed and undirected graphs is APX-hard and NP-hard. Most of our hardness results hold even if the edge weights are restricted to zero and one. On the other hand, we show that the problem of computing L-cycle covers of maximum weight can be approximated with factor 2.5 for undirected graphs and with factor 3 in the case of directed graphs. Finally, we show that 4-cycle covers of maximum weight in graphs with edge weights zero and one can be computed in polynomial time. As a by-product, we show that the problem of computing minimum vertex covers in λ-regular graphs is APX-complete for every λ ≥ 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximability of Minimum-weight Cycle Covers

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L ⊆ N. For most sets L, computing L-cycle covers of minimum weight is NP-hard and APX-hard. While computing L-cycle covers of maximum weight admits constant factor approximation algorithms (both for undirected and dir...

متن کامل

Approximation Algorithms for Restricted Cycle Covers Based on Cycle Decompositions

A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L ⊆ N. For most sets L, the problem of computing L-cycle covers of maximum weight is NP-hard and APX-hard. We devise polynomial-time approximation algorithms for L-cycle covers. More precisely, we present a factor 2 a...

متن کامل

Approximating Multi-criteria Max-TSP

The traveling salesman problem (TSP) is one of the most fundamental problems in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian cycle of minimum or maximum weight. We consider finding Hamiltonian cycles of maximum weight (Max-TSP). An instance of Max-TSP is a complete graph G = (V,E) with edge weights w : E → N. The goal is to find a Hamiltonian cycle of maximum wei...

متن کامل

Approximating Minimum Power Covers of Intersecting Families and Directed Connectivity Problems

Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees p. 152 Improved Algorithms for Data Migration p. 164 Approximation Algorithms for Graph Homomorphism Problems p. 176 Improved Approximation Algorithm for the One-Warehouse Multi-Retailer Problem p. 188 Hardness of Preemptive Finite Capacity Dial-a-Ride Inge Li Gortz p. 200 Minimum Vehicle Routing with a Common Deadline p. 212 Stochasti...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005